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On an EOQ model for deteriorating items with
time-varying demand and partial backlogging
J-T Teng1*, H-L Yang2 and L-Y Ouyang3

1The William Paterson University of New Jersey, Wayne, NJ, USA; 2Hung Kuang Institute of Technology,
Taichung, Taiwan, ROC; and 3Tamkang University, Tamsui, Taipei, Taiwan, ROC

For seasonal products, fashionable commodities and high-tech products with a short product life cycle, the willingness
of a customer to wait for backlogging during a shortage period is diminishing with the length of waiting time. Recently,
Chang and Dye developed an inventory model in which the backlogging rate declines as the waiting time increases. In
this paper, we complement the shortcoming of their model by adding the non-constant purchase cost into the model. In
addition, we show that the total cost is a convex function of the number of replenishments. We further simplify the
search process by providing an intuitively good starting value, which reduces the computational complexity
significantly. Finally, we characterize the influences of the demand patterns over the replenishment cycles and others.
Journal of the Operational Research Society (2003) 54, 432–436. doi:10.1057/palgrave.jors.2601490
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Introduction

For fashionable commodities and other products with a short

life cycle, the willingness of a customer to wait for backlogging

during a shortage period is declining with the length of

waiting time. Hence, the longer the waiting time, the smaller

the backlogging rate. To reflect this phenomenon, Chang and

Dye1 developed an inventory model in which the proportion

of customers who would like to accept backlogging is the

reciprocal of a linear function of the waiting time. Concur-

rently, Papachristos and Skouri2 established a partially

backlogged inventory model in which the backlogging rate

decreases exponentially as the waiting time increases.

In Chang and Dye’s paper, they neither included the

purchase cost for a non-constant order quantity into the

total cost nor defined the opportunity cost due to lost sales

clearly. If the shortages are partially backlogged, then the

total purchase cost is not a constant. Therefore, if we omit

the purchase cost from the total cost, it will alter the optimal

solution. In addition, if the opportunity cost is defined to be

less than the purchase cost per unit, then the optimal

solution that minimizes the total cost will have a large

number of lost sales, which in turn implies a small profit.

Lately, Goyal and Giri3 noted that the opportunity cost was

taken to be too small as $30 (which is only 15% of the unit

purchase cost of $200) in Chang and Dye,1 and suggested the

opportunity cost to be $60 or $90, which would be more

appropriate and meaningful. Unfortunately, the opportunity

cost based on their suggestion is still cheaper than the unit

purchase cost. Consequently, the solution will tend to have a

large number of lost sales. To correct this, we amend the

opportunity cost and add the purchase cost into the total

cost suggested by Chang and Dye.1 We then show that not

only the optimal replenishment schedule exists uniquely, but

also the total cost in the system is a convex function of the

number of replenishments. Consequently, the search for the

optimal number of replenishments is reduced to finding a

local minimum. We further simplify the search process by

providing an intuitively good starting value, which reduces

the computational complexity significantly. Finally, we

characterize the influences of the demand patterns over the

replenishment cycles and others.

Mathematical model

To shorten the paper, we adopt the same notation and

assumptions as in Chang and Dye.1 However, for correct-

ness, we assume that not only the opportunity cost per unit

C3 is greater than the unit purchase cost C4 but also f(t) is

positive and log-concave in (0, H]. As a result, we obtain the

total number of backorders during the ith cycle as

Zti

si�1

f ðuÞ
1þ aðti � uÞ du; si�1ptpti; i ¼ 1; 2; . . .; n; ð1Þ

and the order quantity at t
i
in the ith replenishment cycle as

Qi ¼
Zti

si�1

f ðtÞ
1þ aðti � tÞ dt þ

Zsi

ti

e
yðt�ti Þ

f ðtÞdt; i ¼ 1; 2; . . . ; n

ð2Þ
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Therefore, the purchase cost during the ith replenishment

cycle is

Pi ¼ A þ C4Qi

¼ A þ C4

Zti

si�1

f ðtÞ
1þ aðti � tÞ dt þ

Zsi

ti

eyðt�tiÞf ðtÞdt

2
4

3
5 ð3Þ

Hence, if n replenishment orders are placed in [0,H], then we

can formulate the total relevant cost as the sum of the

purchase cost, inventory holding cost, shortage cost and

opportunity cost due to lost sales as follows:

TCðn; fsig; ftigÞ

¼ nA þ C4

Xn

i¼1

Zti

si�1

f ðtÞ
1þ aðti � tÞ dt þ

Zsi

ti

eyðt�tiÞf ðtÞdt

2
4

3
5

þ Ci

y

Xn

t¼1

Zsi

ti

½eyðt�tiÞ � 1	f ðtÞdt þ ðC2 þ aC3Þ



Xn

i¼1

Zti

si�1

ðti � tÞ
1þ aðti � tÞ f ðtÞdt ð4Þ

The problem is to determine n, {si} and {ti} such that

TC(n,{si},{ti}) is minimized.

Theoretical results

For a fixed value of n, the necessary conditions for

TC(n,{si},{ti}) to be minimized are qTC(n,{si},{ti})/qsi¼ 0
and qTC(n,{si},{ti})/qti¼ 0 for i¼ l, 2,y, n. Consequently,

we obtain

½C2 þ aðC3 � C4Þ	ðtiþ1 � siÞ=½1þ aðtiþ1 � siÞ	

¼ ðC1=yþ C4Þðeyðsi�tiÞ � 1Þ ð5Þ

and

ðC1 þ yC4Þ
Zsi

ti

eyðt�tiÞf ðtÞdt ¼

½C2 þ aðC3 � C4Þ	
Zti

si�1

f ðtÞ
½1þ aðti � tÞ	2

dt

ð6Þ

respectively. Applying (5) and (6), we obtain the following

result.

Theorem 1 For any given n, we have:

(a) The solution to (5) and (6) not only exists but is also

unique.

(b) The solution to (5) and (6) obtains the unique global

minimum.

Proof By using a similar proof as in Hariga,4 as well as

in Chang and Dye,1 we can easily prove (a). See Appendix A

for the detailed proof of (a). Next, we show that for any

given n. Equations (5) and (6) are the necessary and

sufficient conditions for finding the global minimum

TC(n,{si},{ti}). From (5), we know that the optimal value

of si (ie, s�i ) is the interior point between ti and tiþ 1 because if

si¼ ti or tiþ 1, then Equation (5) does not hold. TC(n,{si},

{ti}) is a continuous (and differentiable) function minimized

over the compact set [0,H]2n�1, and hence a global minimum

exists. The optimal value of ti (ie, t�i ) cannot be on the

boundary since TC(n,{si},{ti}) increases when any one of the

ti’s is shifted to the end points 0 or H. Therefore, there must

exist at least an inner global minimum solution that satisfies

(5) and (6). In addition, the solution to (5) and (6) is unique

as shown in part (a) of this theorem. Consequently,

Equations (5) and (6) are the necessary and sufficient

conditions for the global minimum TC(n,{si},{ti}). This

completes the proof. &

Note that our proof of (b) here is much simpler than that

in Hariga,4 and in Chang and Dye,1 in which they proved

that the associated Hessian matrix of the solution to (5) and

(6) has positive principal minors.

Theorem 1 reduces the 2n-dimensional problem of finding

fs�i g and ft�i g to a one-dimensional problem. Since s�0 ¼ 0,

we need only to find t�1 to generate s�1 by (6), t�2 by (5), and

then the rest of ft�i g and fs�i g uniquely by repeatedly using
(5) and (6). For any chosen t�1, if s�n ¼ H, then t�1 is chosen

correctly. Otherwise, we can easily find the optimal t�1 by

standard search schemes. For any given value of n, the

values of ft�i g and fs�i g can be obtained by the algorithm in

Yang et al5 with L¼H/(4n) and U¼H/n as initial trial

values of t�1.

Next, we show that the total relevant cost

TCðn; fs�i g; ft�i gÞ is a convex function of the number of

replenishments. As a result, the search for the optimal

replenishment number, n*, is reduced to finding a local

minimum. For simplicity, let

TCðnÞ ¼ TCðn; fs�i g; ft�i gÞ ð7Þ

By applying Bellman’s principal of optimality,6 we have the

following theorem.

Theorem 2 TC(n) is convex in n.

Proof By using a similar technique as in Friedman,7

Papachristos and Skouri2 or Teng et al,8,9 the reader can

easily prove it. &

Note that Theorem 2 simplifies the search for n* to a local

minimum of TC(n). To avoid using a brute force enumera-

tion as in Chang and Dye,1 Dave10 or Papachristos and

Skouri,2 we further simplify the search process by providing

an intuitively good starting value for n*. In fact, the holding

cost per unit (including inventory and deterioration costs) is

C1þ yC4. The unit penalty cost of lost sales is C3�C4. We
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know from (1) that the backlogging rate is approximately

equal to 1/(1þ a). Therefore, the unit cost of stockout is
approximately equal to C2/(1þ a)þ a(C3�C4)/(1þ a). Sub-
stituting the above results into Equation (15) as in Teng,11

we obtain an estimate of the number of replenishments as

n ¼rounded integer of fðC1 þ yC4Þ½C2=ð1þ aÞ

þ aðC3 � C4Þ=ð1þ aÞ	QðHÞH=½2AðC1 þ yC4

þ C2=ð1þ aÞ þ aðC3 � C4Þ=ð1þ aÞÞ	g1=2 ð8Þ

where Q(H) is the accumulative demand during the planning

horizon H. It is obvious that searching for n* by starting

with n in (8) will reduce the computational complexity

significantly, compared to starting with n¼ 1 (such as in

Chang and Dye,1 Dave10 or Papachristos and Skouri2). The

algorithm for determining the optimal number of replenish-

ments n* is similar to the algorithm in Teng et al8 with two

initial trial values of n*, say n as in (8) and n�1.
Again, applying (5) and (6), we can characterize the

influence of the demand patterns on the length of the

replenishment cycle and others as follows:

Theorem 3 If f (t) is increasing with respect to t, then we

obtain:

(a) The optimal inventory intervals are monotonically

decreasing, that is,

s1 � t14s2 � t24 � � �4sn � tn

(b) The optimal shortage intervals are monotonically

decreasing, that is,

t2 � s14t3 � s24 � � �4tn � sn�1

(c) The optimal replenishment cycles are monotonically

decreasing, that is,

t2 � t14t3 � t24 � � �4tn � tn�1

Proof See Appendix B.

Note that if f(t) is decreasing, then the inequalities in

Theorem 3 are reversed. A simple economic interpretation of

the above results is as follows. Since demand is increasing

with time, we need to shorten the inventory intervals (as well

as the shortage intervals, and hence the replenishment cycles)

with time in order to lower the holding and deterioration

costs (as well as the shortage cost, and hence the total cost),

and vice versa.

Numerical examples

We provide the following numerical examples to illustrate

the proposed method.

Example 1 Let f(t)¼ 40þ 3t, H¼ 4, A¼ 250, C1¼ 80,
C2¼ 120, C3¼ 300, C4¼ 150, y¼ 0.08, a¼ 20 in appropriate
units. By (8), we have n¼ 9, and TC(8)¼ 33747.52,
TC(9)¼ 33533.37, TC(10)¼ 33412.46, TC(11)¼ 33359.32,
TC(12)¼ 33356.95, TC(13)¼ 33393.59. Thus, the replenish-
ment number during the planning horizon H is 12 and the

optimal replenishment schedule is shown in Table 1.

Example 2 Let f(t)¼ 50�3t, H¼ 4, A¼ 250, C1¼ 80,
C2¼ 120, C3¼ 300, C4¼ 150, y¼ 0.08, a¼ 20 in appropriate
units. By (8), we have n¼ 8, and TC(7)¼ 32636.26,
TC(8)¼ 32326.68, TC(9)¼ 32140.96, TC(10)¼ 32042.15,
TC(11)¼ 32006.65, TC(12)¼ 32018.66. Thus, the replenish-
ment number during the planning horizon H is 11 and the

optimal replenishment schedule is shown in Table 2.

It is clear from Table 1 (or 2) that the inventory intervals

(as well as the shortage intervals, and hence the replenish-

ment cycles) are decreasing (or increasing) sequentially,

which are coincident with the results in Theorem 3.

Conclusions

In this paper, we provide an appropriate way to minimize

the costs in a partially backlogged inventory model. We then

show that the optimal replenishment schedule not only exists

but is also unique. In addition, we point out that the total

relevant cost is a convex function of the number of

replenishments. Consequently, the search for the optimal

number of replenishments is reduced to find a local

minimum. We further simplify the search process by

providing an intuitively good starting value, which reduces

the computational complexity significantly by comparing

with a brute force enumeration as in Chang and Dye,1

Table 1 Optimal replenishment schedule for Example 1

i 1 2 3 4 5 6 7 8 9 10 11 12

ti 0.0130 0.3674 0.7173 1.0630 1.4046 1.7423 2.0764 2.4069 2.7340 3.0578 3.3786 3.6963
si 0.3546 0.7047 1.0505 1.3923 1.7302 2.0644 2.3951 2.7224 3.0464 3.3672 3.6851 4.0000

Table 2 Optimal replenishment schedule for Example 2

i 1 2 3 4 5 6 7 8 9 10 11

ti 0.0121 0.3547 0.7010 1.0511 1.4052 1.7635 2.1262 2.4936 2.8658 3.2431 3.6259
si 0.3425 0.6886 1.0385 1.3924 1.7505 2.1130 2.4801 2.8521 3.2292 3.6117 4.0000
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Dave10 or Papachristos and Skouri.2 Finally, we provide

numerical examples for illustration.

The proposed model can be extended in several ways.

Firstly, we can easily extend the backlogging rate of

unsatisfied demand to any decreasing function b(x), where
x is the waiting time up to the next replenishment, and

0pb(x)p1 with b(0)¼ 1. Secondly, we can generalize the
positive log-concave demand function to any positive

continuous function (eg, Teng et al9). Thirdly, we can

consider that the demand is a function of time as well as

price (eg, Abad12). Finally, we can also incorporate the

quantity discount and the learning curve phenomenon into

the model.
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Appendix .A Proof of part (a) of Theorem 1

From Hariga4 (1239), we know that if g(t) is positive and

log-concave, then

gðyÞ � gðxÞp½g0ðxÞ=gðxÞ	
Zy
x

gðtÞdt ðA1Þ

Applying (A1) to gðtÞ ¼ eyðt�tiÞf ðtÞ (which is also positive
and log-concave), we have

eyðsi�tiÞf ðsiÞ � f ðtiÞpðf 0ðtiÞ=f ðtiÞ þ yÞ
Zsi

ti

eyðt�tiÞf ðtÞdt ðA2Þ

Multiplying both sides of (A2) by (C1þ yC4) and using

(6), we obtain

ðC1 þ yC4Þ eyðsi�tiÞf ðsiÞ � f ðtiÞ � y
Zsi

ti

eyðt�tiÞf ðtÞdt

2
4

3
5

p C2 þ aðC3 � C4Þ½ 	 f 0ðtiÞ=f ðtiÞ½ 	
Zti

si�1

f ðtÞ
½1þ aðti � tÞ	2

dt

p C2 þ aðC3 � C4Þ½ 	
Zti

si�1

f 0ðtÞ
½1þ aðti � tÞ	2

dt

ðA3Þ

since f 0ðtiÞ=f ðtiÞ � f 0ðtÞ=f ðtÞ, for st�1ptpt1. Using the

method of integrating by parts to the right-hand-side

integral of (A3), we obtain

Zti

si�1

f 0ðtÞ
½1þ aðti � tÞ	2

dt ¼

f ðtiÞ �
f ðsi�1Þ

½1þ aðti � si�1Þ	2
�

Zti

si�1

2af ðtÞ
½1þ aðti � tÞ	3

dt

2
4

3
5
ðA4Þ

Thus,

ðC1 þ yC4Þ eyðsi�tiÞf ðsiÞ � f ðtiÞ � y
Zsi

ti

eyðt�tiÞf ðtÞdt

2
4

3
5

p C2 þ aðC3 � C4Þ½ 	 f ðtiÞ �
f ðsi�1Þ

½1þ aðti � si�1Þ	2

"

�
Zti

si

2af ðtÞ
½1þ aðti � tÞ	3

dt

#
ðA5Þ

Since s0¼ 0, if t1 is known, then other si’s and ti’s can be

obtained from (5) and (6). Thus, the other si’s and ti’s can be

regarded as functions of t1. By taking implicit differentiation

on (5) and (6) with respect to t1, we have

C2 þ aðC3 � C4Þ
½1þ aðtiþ1 � siÞ	2

dtiþ1
dt1

� dsi

dt1

	 


¼ ðC1 þ yC4Þeyðsi�tiÞ dsi

dt1
� dti

dt1

	 
 ðA6Þ

and

ðC1 þ yC4Þeyðsi�tiÞf ðsiÞ
dsi

dt1
� dti

dt1

	 


þðC1þyC4Þ eyðsi�tiÞf ðsiÞ� f ðtiÞ�y
Zsi

ti

eyðt�tiÞf ðtÞdt

0
@

1
A

2
4

3
5dti

dt1

¼ ½C2 þ aðC3 � C4Þ	 f ðtiÞ
dti

dt1
� f ðsi�1Þ
½1þ aðti � si�1Þ	2

dsi�1
dt1

"

�
Zti

si�1

2af ðtÞdt

½1þ aðti � tÞ	3

0
@

1
A dti

dt1
	 ðA7Þ

respectively. Applying (A5) (A7) with i¼ 1, and using the
fact that ds0/dt1¼ 0 and dt1/dt1¼ 1, we have

ðC1 þ yC4Þeyðs1�t1Þf ðs1Þ
ds1

dt1
� dt1

dt1

	 


X½C2 þ aðC3 � C4Þ	
f ðs0Þ

½1þ aðt1 � s0Þ	2
40

ðA8Þ
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This implies that ds1/dt14dt1/dt1¼ 140. It is obvious

from (A6) that

dtiþ1=dt1 � dsi=dt140 if and only if

dsi=dt1 � dti=dt140;

for i ¼ 1; 2; . . . ; n � 1

ðA9Þ

Consequently, we know dt2/dt14ds1/dt14dt1/dt1¼ 140.

Similarly, multiplying (A5) by dti/dt1 (which is greater than 0

by (A9)) and subtracting it from (A7), we obtain

ðC1 þ yC4Þeyðsi�tiÞf ðsiÞ
dsi

dt1
� dti

dt1

	 


X½C2 þ aðC3 � C4Þ	
f ðsi�1Þ

½1þ aðti � si�1Þ	2

dti

dt1
� dsi�1

dt1

	 

40 for i ¼ 2; 3; . . . ; n

ðA10Þ

Hence, we obtain ds2=dt14dt2=dt14ds1=dt14dt1=dt1 ¼
140. Using (A9) and (A10) repeatedly, we get

dsn

dt1
4
dtn

dt1
4
dsn�1
dt1

4
dtn�1
dt1

4 � � �4ds2

dt1
4
dt2

dt1
4
ds1

dt1
4
dt1

dt1

¼ 140

ðA11Þ

Therefore, si and tiþ 1 (with i41) obtained by (5) and (6)

are monotonically increasing with t1. It is obvious from (5)

and (6) that sn(t1)oH if t1¼ 0 and sn(t1)4H if t1¼H.

Therefore, there exists a unique t1 in (0, H) such that

sn(t1)¼H. This proves part (a) of Theorem 1. &

Appendix .B Proof of Theorem 3

Applying the mean value theorem to (6), we know that there

exist x1 and x2 (with si�1ox2ot1ox1osi) such that

ðC1=yþ C4Þðeyðsi�tiÞ � 1Þf ðx1Þ
¼ ½C2 þ aðC3 � C4Þ	ðti � si�1Þf ðx2Þ=½1þ aðti � si�1Þ	
¼ ðC1=yþ C4Þðeyðsi�1�ti�1Þ � 1Þf ðx2Þ ðbyusing ð5ÞÞ

ðA12Þ

If f(t) is an increasing function, then it is clear that

ðC1=yþ C4Þðeyðsi�tiÞ � 1ÞoðC1=yþ C4Þðeyðsi�1�ti�1Þ � 1Þ
ðA13Þ

Thus, si�tiosi�1�ti�1 for i¼ 2,3,y, n. This completes the

proof of part (a).

Similarly, using (5) again, we have

ðtiþ1 � siÞ=½1þ aðtiþ1 � s1Þ	oðti � si�1Þ=½1þ aðti � si�1Þ	
ðA14Þ

Let g(x)¼ x/(1þ ax), xX0. We have g(0)¼ 0 and

g0(x)¼ 1/(1þ ax)240. This implies that g(x) is a strictly

increasing function. Thus, we have tiþ 1�sioti�si�1, for

i¼ 1, 2,y, n�1. Finally, the proof of part (c) immediately
follows parts (a) and (b). &
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